A feedback mechanism between different tissues in a growing bone is thought to determine the bone's morphogenesis. Cartilage growth strains the surrounding tissues, eliciting alterations of its matrix, which in turn, creates anisotropic stresses, guiding directionality of cartilage growth. The purpose of this study was to evaluate this hypothesis by determining whether collagen fiber directions in the perichondrium and periosteum align with the preferential directions of long bone growth. Tibiotarsi from chicken embryos across developmental stages were scanned using optical projection tomography (OPT) to assess preferential directions of growth at characteristic sites in perichondrium and periosteum. Quantified morphometric data were compared with two-photon laser-scanning microscopy images of the three-dimensional collagen network in these fibrous tissues. The diaphyseal periosteum contained longitudinally oriented collagen fibers that aligned with the preferential growth direction. Longitudinal growth at both metaphyses was twice the circumferential growth. This concurred with well-developed circumferential fibers, which covered and were partly interwoven with a dominant network of longitudinally oriented fibers in the outer layer of the perichondrium/periosteum at the metaphysis. Toward both articulations, the collagen network of the epiphyseal surface was randomly oriented, and growth was approximately biaxial. These findings support the hypothesis that the anisotropic architecture of the collagen network, detected in periosteum and perichondrium, concurs with the assessed growth directions.
(c) 2008 Orthopaedic Research Society