Ionizing radiation causes different types of genetic damage, ranging from base modifications to single- and double-stranded DNA breaks, which may be deleterious or even lethal to the cell. There are different repair or tolerance mechanisms to counteract the damage. Among them is the Escherichia coli SOS system: a set of genes that becomes activated upon DNA damage to confer better opportunities for cell survival. However, since this response is triggered by single-stranded DNA regions, most lesions have to be processed or modified prior to SOS activation. Several genes such as recO, recB and recJ that seem to be required to induce the response have already been reported. The results of this work indicate that the four known E.coli single-strand exonucleases take part in processing gamma radiation damage, though RecJ and ExoI proved to be more important than ExoVII or ExoX. In addition, ExoV as well as glycosylases such as Nth and, to a lesser extent, Fpg are also required. A model intended to explain the role of all these genes in damage processing is presented.