Myeloablative 131I-tositumomab radioimmunotherapy in treating non-Hodgkin's lymphoma: comparison of dosimetry based on whole-body retention and dose to critical organ receiving the highest dose

J Nucl Med. 2008 May;49(5):837-44. doi: 10.2967/jnumed.107.043190. Epub 2008 Apr 15.

Abstract

Myeloablative radioimmunotherapy using (131)I-tositumomab (anti-CD20) monoclonal antibodies is an effective therapy for B-cell non-Hodgkin's lymphoma. The amount of radioactivity for radioimmunotherapy may be determined by several methods, including those based on whole-body retention and on dose to a limiting normal organ. The goal of each approach is to deliver maximal myeloablative amounts of radioactivity within the tolerance of critical normal organs.

Methods: Records of 100 consecutive patients who underwent biodistribution and dosimetry evaluation after tracer infusion of (131)I-tositumomab before radioimmunotherapy were reviewed. We assessed organ and tissue activities over time by serial gamma-camera imaging to calculate radiation-absorbed doses. Organ volumes were determined from CT scans for organ-specific dosimetry. These dose estimates helped us to determine therapy on the basis of projected dose to the critical normal organ receiving a maximum tolerable radiation dose. We compared organ-specific dosimetry for treatment planning with the whole-body dose-assessment method by retrospectively analyzing the differences in projected organ-absorbed doses and their ratios.

Results: Mean organ doses per unit of administered activity (mGy/MBq) estimated by both methods were 0.33 for liver and 0.33 for lungs by the whole-body method and 1.52 for liver and 1.74 for lungs by the organ-specific method (P=0.0001). The median differences between methods were 0.92 mGy/MBq (range, 0.36-2.2 mGy/MBq) for lungs, 0.82 mGy/MBq (range, 0.28-1.67 mGy/MBq) for liver, and -0.01 mGy/MBq (range, -0.18-0.16 mGy/MBq) for whole body. The median ratios of the treatment activities based on limiting normal-organ dose were 5.12 (range, 2.33-10.01) for lungs, 4.14 (range, 2.16-6.67) for liver, and 0.94 (range, 0.79-1.22) for whole body. We found substantial differences between the dose estimated by the 2 methods for liver and lungs (P=0.0001).

Conclusion: Dosimetry based on whole-body retention will underestimate the organ doses, and a preferable approach is to evaluate organ-specific doses by accounting for actual radionuclide biodistribution. Myeloablative treatments based on the latter approach allow administration of the maximum amount of radioactivity while minimizing toxicity.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Antibodies, Monoclonal / pharmacokinetics*
  • Antibodies, Monoclonal / therapeutic use*
  • Cohort Studies
  • Humans
  • Lymphoma, Non-Hodgkin / prevention & control
  • Lymphoma, Non-Hodgkin / radiotherapy*
  • Middle Aged
  • Neoplasm, Residual / radiotherapy
  • Radiation Dosage*
  • Radioimmunotherapy / methods*
  • Radiotherapy Dosage
  • Recurrence
  • Retrospective Studies
  • Sensitivity and Specificity
  • Whole-Body Counting / methods*

Substances

  • Antibodies, Monoclonal
  • tositumomab I-131