Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is one of the most effective anti-malarial analogs of artemisinin. In the current study, we found that DHA inhibited the proliferation of a panel of tumor cells originated from different tissue types. DHA effectively induced apoptosis in human promyelocytic leukemia HL-60 cells, which was accompanied with mitochondrial dysfunction and caspases activation. Further studies indicated that DHA-induced apoptosis was iron-dependent. Though DHA slightly elicited superoxide anion, these reactive oxygen species (ROS) contribute little to DHA-induced apoptosis in HL-60 cells. Moreover, DHA time-dependently activated mitogen-activeted protein kinases (MAPKs) and specific inhibition of p38 MAPK, but not c-Jun-NH2-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK), abolished DHA-induced apoptosis, indicating that activation of p38 MAPK is required for DHA-induced apoptosis in HL-60 cells. Altogether, our data uncover that DHA induces apoptosis is dependent of iron and p38 MAPK activation but not ROS in HL-60 cells.