The endocannabinoid system in brain reward processes

Br J Pharmacol. 2008 May;154(2):369-83. doi: 10.1038/bjp.2008.130. Epub 2008 Apr 14.

Abstract

Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Arachidonic Acids / metabolism
  • Biological Transport
  • Brain / metabolism*
  • Cannabinoid Receptor Modulators / metabolism*
  • Endocannabinoids*
  • Glycerides / metabolism
  • Humans
  • Neural Pathways / metabolism
  • Polyunsaturated Alkamides / metabolism
  • Receptors, Cannabinoid / metabolism*
  • Reward*
  • Signal Transduction*

Substances

  • Arachidonic Acids
  • Cannabinoid Receptor Modulators
  • Endocannabinoids
  • Glycerides
  • Polyunsaturated Alkamides
  • Receptors, Cannabinoid
  • glyceryl 2-arachidonate
  • anandamide