A host-induced intramolecular charge-transfer complex and light-driven radical cation formation of a molecular triad with cucurbit[8]uril

J Org Chem. 2008 May 16;73(10):3775-83. doi: 10.1021/jo800110b. Epub 2008 Apr 18.

Abstract

The host-guest chemistry of systems containing a molecular triad Ru(bpy) 3-MV (2+)-naphthol complex (denoted as Ru (2+)-MV (2+)-Np, 1) and cucurbit[8]uril (CB[8]) is investigated by NMR, ESI-MS, UV-vis, and electrochemistry. The Ru (2+)-MV (2+)-Np guest and CB[8] host can form a stable 1:1 inclusion complex, in which the naphthalene residue is back-folded and inserted together with the viologen residue into the cavity of CB[8]. The selective binding of Ru (2+)-MV (2+)-Np guest with beta-CD and CB[8] host is also investigated. We find that CB[8] binds the Ru (2+)-MV (2+)-Np guest stronger than beta-CD. Upon light irradiation, a MV (+*) radical cation stabilized in the cavity of CB[8] accompanied by the naphthalene residue has been observed. This novel system may open a new way for design and synthesis of photoactive molecular devices.