Defective regulation of contractile function in muscle fibres carrying an E41K beta-tropomyosin mutation

J Physiol. 2008 Jun 15;586(12):2993-3004. doi: 10.1113/jphysiol.2008.153650. Epub 2008 Apr 17.

Abstract

A novel E41K beta-tropomyosin (beta-Tm) mutation, associated with congenital myopathy and muscle weakness, was recently identified in a woman and her daughter. In both patients, muscle weakness was coupled with muscle fibre atrophy. It remains unknown, however, whether the E41K beta-Tm mutation directly affects regulation of muscle contraction, contributing to the muscle weakness. To address this question, we studied a broad range of contractile characteristics in skinned muscle fibres from the two patients and eight healthy controls. Results showed decreases (i) in speed of contraction at saturated Ca(2+) concentration (apparent rate constant of force redevelopment (k(tr)) and unloaded shortening speed (V(0))); and (ii) in contraction sensitivity to Ca(2+) concentration, in fibres from patients compared with controls, suggesting that the mutation has a negative effect on contractile function, contributing to the muscle weakness. To investigate whether these negative impacts are reversible, we exposed skinned muscle fibres to the Ca(2+) sensitizer EMD 57033. In fibres from patients, 30 mum of EMD 57033 (i) had no effect on speed of contraction (k(tr) and V(0)) at saturated Ca(2+) concentration but (ii) increased Ca(2+) sensitivity of contraction, suggesting a potential therapeutic approach in patients carrying the E41K beta-Tm mutation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / genetics
  • Adult
  • Aged
  • Female
  • Gene Expression Regulation / genetics
  • Genotype
  • Humans
  • Models, Genetic*
  • Muscle Contraction / genetics*
  • Muscle Fibers, Skeletal*
  • Muscle, Skeletal / physiopathology*
  • Mutation
  • Myopathies, Structural, Congenital / pathology
  • Myopathies, Structural, Congenital / physiopathology*
  • Tropomyosin / genetics*

Substances

  • Tropomyosin