A two-dimensional iron(II) carboxylate linear chain polymer that exhibits a metamagnetic spin-canted antiferromagnetic to single-chain magnetic transition

Inorg Chem. 2008 May 19;47(10):4077-87. doi: 10.1021/ic701879y. Epub 2008 Apr 19.

Abstract

A two-dimensional iron(II) carboxylate coordination polymer, [Fe(pyoa)2]infinity, where pyoa is 2-(pyridin-3-yloxy)acetate, has been prepared by hydrothermal synthesis. Its crystal structure reveals a single iron(II) site with an elongated octahedral coordination environment containing four equatorial carboxylate oxygens and two axial pyridyl nitrogens; the iron(II) sites are linked by syn-anti micro-carboxylates to form chains along the b axis that have an Fe...Fe separation of 4.910 A. The shortest interchain and interlayer Fe...Fe distances are 6.453 and 11.125 A, respectively. The 4.2-295 K Mössbauer spectra of [Fe(pyoa) 2] infinity consist of a single paramagnetic high-spin iron(II) quadrupole doublet. The axial Fe-N bond direction defines the Jahn-Teller axis at an iron(II) site and, consequently, the orientation of the single-ion magnetic anisotropy. Thus, along the b axis in a given chain, the spins are collinear and parallel to the Jahn-Teller axis. The Jahn-Teller axes of adjacent intralayer chains have different orientations with an angle of 79.2 degrees between the axes in adjacent chains in a bc layer. [Fe(pyoa)2]infinity exhibits field-induced metamagnetic behavior such that, in an applied field smaller than the critical field, the iron(II) spin-canted moments experience intrachain ferromagnetic interactions and weak interchain antiferromagnetic interactions; the spin canting yields weak ferromagnetism. In an applied field larger than the critical field, the weak antiferromagnetic interchain interactions are overwhelmed to yield superparamagnetic-like slow-magnetic relaxation with an energy barrier of 23(3) K. Single-crystal magnetic studies reveal a quasi-uniaxial magnetic anisotropy with the a axis as the easy-magnetic axis and the b axis as the hard-magnetic axis; the susceptibility measured along the easy a axis may be fit with the Glauber model to yield an effective intrachain exchange coupling constant of 2.06(8) K. A dynamic analysis of the susceptibility yields a 6.3(1) K energy barrier for intrachain domain wall creation. The observed field-assisted superparamagnet-like behavior is consistent with the dynamics of a single-chain magnet. Thus, [Fe(pyoa)2]infinity is best considered as a "metamagnetic-like" single-chain magnet.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Crystallography, X-Ray
  • Ferrous Compounds / chemistry*
  • Ligands
  • Magnetics*
  • Models, Molecular
  • Molecular Structure
  • Polymers / chemistry*
  • Spectroscopy, Mossbauer
  • Temperature

Substances

  • Ferrous Compounds
  • Ligands
  • Polymers