TRAIL promotes apoptotic tumor cell death; however, TRAIL-resistant tumors need to be sensitized to reverse resistance. Proteasome inhibitors potentiate TRAIL apoptosis in vitro and in vivo and correlate with up-regulation of death receptor 5 (DR5) via an unknown mechanism. We hypothesized that the proteasome inhibitor NPI-0052 inhibits the transcription repressor Yin Yang 1 (YY1) which regulates TRAIL resistance and negatively regulates DR5 transcription. Treatment of PC-3 and Ramos cells with NPI-0052 (</=2.5 nM) and TRAIL sensitizes the tumor cells to TRAIL-induced apoptosis. By comparison to bortezomib, a 400-fold less concentration of NPI-0052 was used. NPI-0052 up-regulated DR5 reporter activity and both surface and total DR5 protein expression. NPI-0052-induced inhibition of NF-kappaB activity was involved in TRAIL sensitization as corroborated by the use of the NF-kappaB inhibitor dehydroxymethylepoxyquinomicin. NPI-0052 inhibited YY1 promoter activity as well as both YY1 mRNA and protein expression. The direct role of NPI-0052-induced inhibition of YY1 and up-regulation of DR5 in the regulation of TRAIL sensitivity was demonstrated by the use of YY1 small interfering RNA. The NPI-0052-induced sensitization to TRAIL involved activation of the intrinsic apoptotic pathway and dysregulation of genes that regulate apoptosis. The NPI-0052 concentrations used for TRAIL sensitization were not toxic to human hematopoetic stem cells. The present findings demonstrate, for the first time, the potential mechanism by which a proteasome inhibitor, like NPI-0052, inhibits the transcription repressor YY1 involved in TRAIL resistance and DR5 regulation. The findings also suggest the therapeutic application of subtoxic NPI-0052 concentrations in combination with TRAIL/agonist DR4/DR5 mAbs in the treatment of TRAIL-resistant tumors.