Crystallographic characterization of helical secondary structures in alpha/beta-peptides with 1:1 residue alternation

J Am Chem Soc. 2008 May 21;130(20):6544-50. doi: 10.1021/ja800355p. Epub 2008 Apr 26.

Abstract

Oligomers that contain both alpha- and beta-amino acid residues in a 1:1 alternating pattern have recently been shown by several groups to adopt helical secondary structures in solution. The beta-residue substitution pattern has a profound effect on the type of helix formed and the stability of the helical conformation. On the basis of two-dimensional NMR data, we have previously proposed that beta-residues with a five-membered ring constraint promote two different types of alpha/beta-peptide helix. The "11-helix" contains i, i+3 CO...H-N hydrogen bonds between backbone amide groups; these hydrogen bonds occur in 11-atom rings. The alpha/beta-peptide "14/15-helix" contains i, i+4 CO...H-N hydrogen bonds, which occur in alternating 14- and 15-atom rings. Here we provide crystallographic data for 14 alpha/beta-peptides that form the 11-helix and/or the 14/15-helix. These results were obtained for a series of oligomers containing beta-residues derived from ( S,S)- trans-2-aminocyclopentanecarboxylic acid (ACPC) and alpha-residues derived from alpha-aminoisobutyric acid (Aib) or l-alanine (Ala). The crystallized alpha/beta-peptides range in length from 4 to 10 residues. Nine of the alpha/beta-peptides display the 11-helix in the solid state, three display the 14/15-helix, and two display conformations that contain both i, i+3 and i, i+4 CO...H-N hydrogen bonds, but not bifurcated hydrogen bonds. Only 3 of the 14 crystal structures presented here have been previously described. These results suggest that longer alpha/beta-peptides prefer the 14/15-helix over the 11-helix, a conclusion that is consistent with previously reported NMR data obtained in solution.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carboxylic Acids / chemistry
  • Crystallography, X-Ray
  • Cyclopropanes / chemistry
  • Models, Molecular
  • Nuclear Magnetic Resonance, Biomolecular
  • Peptides / chemical synthesis
  • Peptides / chemistry*
  • Protein Folding
  • Protein Structure, Secondary*
  • Solutions

Substances

  • Carboxylic Acids
  • Cyclopropanes
  • Peptides
  • Solutions
  • cis-beta-aminocyclopropanecarboxylic acid