The earthworm, Lumbricus rubellus, plays an essential role in soil ecosystems as it affects organic matter decomposition and nutrient cycling. By ingesting a mixture of organic and mineral material, a variety of bacteria and fungi are carried to the intestinal tract of the earthworm. To get a better understanding of the interactions between L. rubellus and the microorganisms ingested, this study tried to reveal if the diet affects the composition of the gut microflora of L. rubellus or if its intestinal tract hosts an indigenous, species-specific microbiota. A feeding experiment with L. rubellus was set up; individuals were collected in the field, transferred to a climate chamber and fed with food sources of different quality (dwarf shrub litter, grass litter or horse dung) for six weeks. DNA was extracted from the guts of the earthworms, as well as from the food sources and the surrounding soil, and further analysed by a molecular fingerprinting method, PCR-DGGE (Polymerase Chain Reaction -- Denaturing Gradient Gel Electrophoresis). We were able to demonstrate that the gut microbiota was strongly influenced by the food source ingested and was considerably different to that of the surrounding soil. Sequencing of dominant bands of the bacterial DGGE fingerprints revealed a strong occurrence of y-Proteobacteria in all gut samples, independent of the food source. A specific microflora in the intestinal tract of L. rubellus, robust against diet changes, could not be found.