Objective: To evaluate the effect of whole body vibration on the mobility of long-term immobilized children and adolescents with a severe form of osteogenesis imperfecta. Osteogenesis imperfecta is a hereditary primary bone disorder with a prevalence from 1 in 10000 to 1 in 20000 births. Most of these children are suffering from long-term immobilization after recurrent fractures. Due to the immobilization they are affected by loss of muscle (sarcopenia) and secondary loss of bone mass.
Subjects: Whole body vibration was applied to eight children and adolescents (osteogenesis imperfecta type 3, N=5; osteogenesis imperfecta type 4, N=3) over a period of six months.
Interventions and results: Whole body vibration was applied by a vibrating platform (Galileo Systems) constructed on a tilting-table. Success of treatment was assessed by measuring alterations of the tilting-angle and evaluating the mobility (Brief Assessment of Motor Function). All individuals were characterized by improved muscle force documented by an increased tilting-angle (median = 35 degrees) or by an increase in ground reaction force (median at start=30.0 [N/kg] (14.48-134.21); median after six months = 146.0 [N/kg] (42.46-245.25).
Conclusions: Whole body vibration may be a promising approach to improve mobility in children and adolescents severely affected with osteogenesis imperfecta.