In the azoxymethane (AOM) model of experimental rodent colon cancer, cholic acid and its colonic metabolite deoxycholic acid (DCA) strongly promote tumorigenesis. In contrast, we showed that ursodeoxycholic acid (UDCA), a low abundance bile acid, inhibited AOM tumorigenesis. Dietary UDCA also blocked the development of tumors with activated Ras and suppressed cyclooxygenase-2 (Cox-2) upregulation in AOM tumors. In this study, we compared the effect of dietary supplementation with tumor-promoting cholic acid to chemopreventive UDCA on Cox-2 expression in AOM tumors. Cholic acid enhanced Cox-2 upregulation in AOM tumors, whereas UDCA inhibited this increase and concomitantly decreased CCAAT/enhancer binding protein beta (C/EBPbeta), a transcriptional regulator of Cox-2. In HCA-7 colon cancer cells, DCA activated Ras and increased C/EBPbeta and Cox-2 by a mechanism requiring the mitogen-activated protein kinase p38. UDCA inhibited DCA-induced p38 activation and decreased C/EBPbeta and Cox-2 upregulation. Using transient transfections, UDCA inhibited Cox-2 promoter and C/EBP reporter activation by DCA. Transfection with dominant-negative (17)N-Ras abolished DCA-induced p38 activation and C/EBPbeta and Cox-2 upregulation. Taken together, these studies have identified a transcriptional pathway regulating Cox-2 expression involving Ras, p38, and C/EBPbeta that is inhibited by UDCA. These signal transducers are novel targets of UDCA's chemopreventive actions.