FADD is the key adaptor transmitting the apoptotic signal mediated by death receptors. We have previously shown that FADD protein expression could be lost in vivo in cancerous cells, in mice and humans, and be used as prognostic factor. Furthermore, loss of FADD could contribute to tumor progression and aggressiveness. However, the mechanism accounting for the loss of FADD was unknown. Using in vitro-cultured mouse organ models, we demonstrated that loss of FADD occurred through a new regulatory pathway of FADD expression by secretion. The secretion of FADD is an active release following shedding of microvesicles derived from the plasma membrane. In our experimental settings, this phenomenon was restricted to 6 of 12 FADD-expressing organs. This process is calcium- and adenosine-dependent. Moreover, we identified the two receptors with low affinity to adenosine, namely A(2B) and A(3) adenosine receptors, as regulators of the FADD secretion process. Furthermore, we showed that modulating A(3) adenosine receptor can convert a nonsecreting organ into a FADD-secreting one. Finally, we reported that mouse FADD release occurred in vivo during tumor disease. These results demonstrate the existence of a new localization site (in microvesicles) and regulatory mechanism (by secretion) of the FADD protein, and the implication of adenosine receptors in this process. These data open a new field of investigation consisting of the possibility to regulate FADD expression via the modulation of adenosine receptors, which constitutes a therapeutic target in diseases in which FADD-mediated signaling is impaired.