Ceria possesses strong catalytic properties for CONO(x) removal and H(2) production. Clusters often show more intriguing functionalities than their bulk counterparts. Here, the geometric and electronic structures of Ce(n)O(m) (n=1-4,m=2n-1,2n) clusters are studied for the first time using the projected augmented wave method in density functional theory with detailed assessment of the exchange-correlation functional and the Hubbard parameter U. We note that the U value strongly affects the electronic structures of the oxygen-deficient Ce(n)O(2n-1) clusters, though less so on the stoichiometric Ce(n)O(2n). Furthermore, the local density approximation (LDA)+U method is more accurate than the generalized gradient approximation+U in describing the localization of the 4f electrons of the Ce(n)O(m) clusters. The calculated vibration frequency of the CeO molecule with the LDA+U (U=4 eV) is 818.4 cm(-1), in close agreement with experimental values of 820-825 cm(-1) for the low lying states. Different optimal U values were noted for the ceria cluster (4 eV) and its bulk (6 eV), due to quantum-size and geometric effects. The largely reduced formation energy of an oxygen vacancy indicates that the catalytic effect of the Ce(n)O(m) clusters are far greater than bulk CeO(2).