Modeling of intermolecular forces is a central theme in the physical sciences. The prototypical heterogeneous catalysis system, CO/Pt(111), is an extensively studied example where strong pairwise repulsive forces between the CO molecules have been used to explain the observed structure and dynamics. No direct measurements of these forces were available; yet, they offered a natural way of explaining various macroscopic observations assuming a separable adsorbate-substrate interaction and pairwise adsorbate-adsorbate interactions. In the present study, we measure intermolecular forces by following CO motion on a microscopic scale. The uncorrelated dynamics we observe throughout the coverage range of the measurements excludes the existence of the strong pairwise forces previously suggested. The increase in the rate of uncorrelated motion is explained by a nonlocal modification of the adsorbate-substrate interaction, reflecting a many-body system that cannot be described by the standard separable interaction approach.