A new 2D coordination polymer Co3(OH)2(pa)2(ina)2 (1, pa = 3-(1H-benzimidazol-2-yl) propanoic carboxylate, ina = isonicotinate) contained uncommon, linear Co(ii) trimers of mixed Td-Oh-Td geometries, exhibits spin canting below 20 K. Such magnetic behavior mainly arises from the Dzyaloshinski-Moriya interaction from the anisotropic, mixed geometries trimeric Co(II) ions to the crimpled 2D network based on the nature of the binding modes of Co(II)-carboxylate trimer and the effect of the intertrimers arrangement of 1. The mixed single-carboxylate-aromatic amine ligands bridged metal systems display a new structurally authenticated example of a thick 2D layer, and also indicate homometallic Co(II) clusters with Td-Oh-Td mixed-geometries can result in relatively obvious noncompensation moments, according to different efficient spins of Co(II) at very low temperature, in spite of antiferromagnetic intracluster interactions.