The resorcylic acid lactones zearalenone ( 1), alpha-zearalenol ( 2), beta-zearalenol ( 3), alpha-zearalanol (zeranol) ( 4), beta-zearalanol (taleranol) ( 5), and zearalanone ( 6) were converted to their glucuronides on a preparative scale in good yields. Reactions were conducted with bovine uridine 5'-diphosphoglucuronyl transferase (UDPGT) as catalyst and uridine 5'-diphosphoglucuronic acid (UDPGA) as cofactor. The glucuronides were isolated by column chromatography and characterized by NMR spectroscopy and mass spectrometry. Although the principal products were 4- O-glucuronides (i.e., linkage through a phenolic hydroxyl), significant quantities of the 6'- O-glucuronides (i.e., linkage through the aliphatic hydroxyl) of alcohols 2, 4, and 5 were also isolated. In the case of 3, the 2- O-glucuronide was isolated as the minor product. Overall isolated yields of glucuronides, performed on a 20-50 mg scale, were typically ca. 80% based on the resorcylic acid lactone starting material. LC-UV-MS (2) analysis of purified specimens revealed MS (2) fragmentations useful for defining the point of attachment of the glucuronide moiety to the zearalenone nucleus.