Sézary syndrome (SzS), the leukemic variant of cutaneous T-cell lymphomas, is incurable. Dendritic cells (DCs) transfected with tumor mRNA can stimulate antitumor immunity in certain cancer patients. In this study, we determined whether mRNAs from Sézary cells could be used for loading DCs and stimulating antitumor immunity. Autologous DCs were generated from monocytes of the peripheral blood from 10 patients with SzS. Total RNA was extracted from Sézary cells and amplified by T7 in vitro transcription. The induction of antitumor IFN-gamma and granzyme B (GrB)-producing cytotoxic T lymphocytes (CTL) by RNA-transfected DCs was determined by ELISPOT assays. We found that IFN-gamma was required for IL-12p70 production by monocyte-derived DCs from SzS. The oncogenic transcription factor Twist and the tyrosine kinase receptor EphA4 were expressed in total RNA from Sézary cells and the paired amplified mRNAs. RNA-transfected DCs induced antitumor IFN-gamma-producing CTLs in 7 of 10 subjects and GrB-producing CTLs in 6 of 9 subjects. Both CD3+CD8+ T cells and CD4+CD25+ T cells were expanded without induction of regulatory T cells. These data support the concept of using tumor mRNA for a vaccine strategy that requires small amounts of tumor cells without need for specific antigens in patients with SzS.