Unexpectedly similar charge transfer rates through benzo-annulated bicyclo[2.2.2]octanes

J Am Chem Soc. 2008 Jun 18;130(24):7659-69. doi: 10.1021/ja8004623. Epub 2008 May 24.

Abstract

A 4-(pyrrolidin-1-yl)phenyl electron donor and 10-cyanoanthracen-9-yl electron acceptor are attached via alkyne linkages to the bridgehead carbon atoms of bicyclo[2.2.2]octane and all three benzo-annulated bicyclo[2.2.2]octanes. The sigma-system of bicyclo[2.2.2]octane provides a scaffold having nearly constant bridge geometry on which to append multiple, weakly interacting benzo pi-bridges, so that the effect of incrementally increasing numbers of pi-bridges on electron transfer rates can be studied. Surprisingly, photoinduced charge transfer rates measured by transient absorption spectroscopy in toluene show no benefit from increasing the number of bridge pi-systems, suggesting dominant transport through the sigma-system. Even more surprisingly, the significant changes in hybridization undergone by the sigma-system as a result of benzo-annulation also appear to have no effect on the charge transfer rates. Natural Bond Orbital analysis is applied to both sigma- and pi-communication pathways. The transient absorption spectra obtained in 2-methyltetrahydrofuran (MTHF) show small differences between the benzo-annulated molecules that are attributed to changes in solvation. All charge transfer rates increase significantly upon cooling the MTHF solutions to their glassy state. This behavior is rationalized using combined molecular dynamics/electronic structure trajectories.