Bayesian template estimation in computational anatomy

Neuroimage. 2008 Aug 1;42(1):252-61. doi: 10.1016/j.neuroimage.2008.03.056. Epub 2008 Apr 11.

Abstract

Templates play a fundamental role in Computational Anatomy. In this paper, we present a Bayesian model for template estimation. It is assumed that observed images I(1), I(2),...,I(N) are generated by shooting the template J through Gaussian distributed random initial momenta theta(1), theta(2),...,theta(N). The template is J modeled as a deformation from a given hypertemplate J(0) with initial momentum mu, which has a Gaussian prior. We apply a mode approximation of the EM (MAEM) procedure, where the conditional expectation is replaced by a Dirac measure at the mode. This leads us to an image matching problem with a Jacobian weight term, and we solve it by deriving the weighted Euler-Lagrange equation. The results of template estimation for hippocampus and cardiac data are presented.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Bayes Theorem
  • Hippocampus / anatomy & histology*
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity