The total oligomers flavonoids (TOF), chloroform, petroleum ether and aqueous extracts from Acacia salicina, were investigated for the antioxidative, cytotoxic, antimutagenic and antigenotoxic activities. The viability of K562 cells were affected by all extracts after 48 h exposure. Our results showed that A. salicina extracts have antigenotoxic and/or antimutagenic activities. TOF and chloroform extracts exhibit antioxidant properties, expressed by the capacity of these extracts to inhibit xanthine oxidase activity. To further explore the mechanism of action of A. salicina extracts, we characterized expression profiles of genes involved in antioxidant protection and DNA repair in the human lymphoblastic cell line K562 exposed to H2O2. Transcription of several genes related to the thioredoxin antioxidant system and to the DNA base-excision repair pathway was up-regulated after incubation with chloroform, TOF and petroleum ether extracts. Moreover genes involved in the nucleotide-excision repair pathway and genes coding for catalase and Mn-superoxide-dismutase, two important antioxidant enzymes, were induced after incubation with the chloroform extract. Taken together, these observations provide evidence that the chloroform and TOF extracts of A. salicina leaves contain bioactive compounds that are able to protect cells against the consequences of an oxidative stress.