Uncovering a pressure-tuned electronic transition in Bi(1.98)Sr(2.06)Y(0.68)Cu(2)O(8+delta) using Raman scattering and x-ray diffraction

Phys Rev Lett. 2008 May 30;100(21):217003. doi: 10.1103/PhysRevLett.100.217003. Epub 2008 May 30.

Abstract

We report pressure-tuned Raman and x-ray diffraction data of Bi(1.98.)Sr(2.06)Y(0.68)Cu(2)O(8+delta) revealing a critical pressure at 21 GPa with anomalies in electronic Raman background, electron-phonon coupling lambda, spectral weight transfer, density dependent behavior of phonons and magnons, and a compressibility change in the c axis. For the first time in a cuprate, mobile charge carriers, lattice, and magnetism all show anomalies at a distinct critical pressure in the same experimental setting. Furthermore, the spectral changes suggest that the critical pressure at 21 GPa is related to the critical point at optimal doping.