Position-specific residue preference features around the ends of helices and strands and a novel strategy for the prediction of secondary structures

Protein Sci. 2008 Sep;17(9):1505-12. doi: 10.1110/ps.035691.108. Epub 2008 Jun 2.

Abstract

It has been many years since position-specific residue preference around the ends of a helix was revealed. However, all the existing secondary structure prediction methods did not exploit this preference feature, resulting in low accuracy in predicting the ends of secondary structures. In this study, we collected a relatively large data set consisting of 1860 high-resolution, non-homology proteins from the PDB, and further analyzed the residue distributions around the ends of regular secondary structures. It was found that there exist position-specific residue preferences (PSRP) around the ends of not only helices but also strands. Based on the unique features, we proposed a novel strategy and developed a tool named E-SSpred that treats the secondary structure as a whole and builds models to predict entire secondary structure segments directly by integrating relevant features. In E-SSpred, the support vector machine (SVM) method is adopted to model and predict the ends of helices and strands according to the unique residue distributions around them. A simple linear discriminate analysis method is applied to model and predict entire secondary structure segments by integrating end-prediction results, tri-peptide composition, and length distribution features of secondary structures, as well as the prediction results of the most famous program PSIPRED. The results of fivefold cross-validation on a widely used data set demonstrate that the accuracy of E-SSpred in predicting ends of secondary structures is about 10% higher than PSIPRED, and the overall prediction accuracy (Q(3) value) of E-SSpred (82.2%) is also better than PSIPRED (80.3%). The E-SSpred web server is available at http://bioinfo.hust.edu.cn/bio/tools/E-SSpred/index.html.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Databases, Protein
  • Models, Chemical
  • Molecular Sequence Data
  • Predictive Value of Tests
  • Protein Structure, Secondary*
  • Reproducibility of Results
  • Software