Salt-sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4-2

Am J Physiol Renal Physiol. 2008 Aug;295(2):F462-70. doi: 10.1152/ajprenal.90300.2008. Epub 2008 Jun 4.

Abstract

Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination. These results suggest that the interaction between Nedd4-2 and ENaC may play a crucial role in Na+ homeostasis and blood pressure (BP) regulation. To test these predictions in vivo, we generated Nedd4-2 null mice. The knockout mice had higher BP on a normal diet and a further increase in BP when on a high-salt diet. The hypertension was probably mediated by ENaC overactivity because 1) Nedd4-2 null mice had higher expression levels of all three ENaC subunits in kidney, but not of other Na+ transporters; 2) the downregulation of ENaC function in colon was impaired; and 3) NaCl-sensitive hypertension was substantially reduced in the presence of amiloride, a specific inhibitor of ENaC. Nedd4-2 null mice on a chronic high-salt diet showed cardiac hypertrophy and markedly depressed cardiac function. Overall, our results demonstrate that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of this gene is sufficient to produce salt-sensitive hypertension. This model provides an opportunity to further investigate mechanisms and consequences of this common disorder.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Blood Pressure / drug effects
  • Blood Pressure / physiology
  • Cardiomegaly / genetics*
  • Cardiomegaly / metabolism
  • Disease Models, Animal
  • Endosomal Sorting Complexes Required for Transport
  • Epithelial Sodium Channels / metabolism
  • Hypertension / genetics*
  • Hypertension / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Nedd4 Ubiquitin Protein Ligases
  • Sodium Chloride, Dietary / pharmacology
  • Ubiquitin-Protein Ligases / genetics*
  • Ubiquitin-Protein Ligases / metabolism

Substances

  • Endosomal Sorting Complexes Required for Transport
  • Epithelial Sodium Channels
  • Sodium Chloride, Dietary
  • Nedd4 Ubiquitin Protein Ligases
  • Nedd4l protein, mouse
  • Ubiquitin-Protein Ligases