Chaetognath transcriptome reveals ancestral and unique features among bilaterians

Genome Biol. 2008;9(6):R94. doi: 10.1186/gb-2008-9-6-r94. Epub 2008 Jun 4.

Abstract

Background: The chaetognaths (arrow worms) have puzzled zoologists for years because of their astonishing morphological and developmental characteristics. Despite their deuterostome-like development, phylogenomic studies recently positioned the chaetognath phylum in protostomes, most likely in an early branching. This key phylogenetic position and the peculiar characteristics of chaetognaths prompted further investigation of their genomic features.

Results: Transcriptomic and genomic data were collected from the chaetognath Spadella cephaloptera through the sequencing of expressed sequence tags and genomic bacterial artificial chromosome clones. Transcript comparisons at various taxonomic scales emphasized the conservation of a core gene set and phylogenomic analysis confirmed the basal position of chaetognaths among protostomes. A detailed survey of transcript diversity and individual genotyping revealed a past genome duplication event in the chaetognath lineage, which was, surprisingly, followed by a high retention rate of duplicated genes. Moreover, striking genetic heterogeneity was detected within the sampled population at the nuclear and mitochondrial levels but cannot be explained by cryptic speciation. Finally, we found evidence for trans-splicing maturation of transcripts through splice-leader addition in the chaetognath phylum and we further report that this processing is associated with operonic transcription.

Conclusion: These findings reveal both shared ancestral and unique derived characteristics of the chaetognath genome, which suggests that this genome is likely the product of a very original evolutionary history. These features promote chaetognaths as a pivotal model for comparative genomics, which could provide new clues for the investigation of the evolution of animal genomes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Evolution, Molecular
  • Gene Duplication
  • Gene Expression Profiling*
  • Genome
  • Invertebrates / classification
  • Invertebrates / genetics*
  • Phylogeny