Purpose: We investigated in vitro the potential of macrophages to act as targeted vehicle for ultrasound molecular imaging.
Procedures: Murine bone marrow-derived macrophages (BMM), incubated for 3 h with different concentrations of perfluorohexane (PFH) emulsions, were monitored by microscopy, flow cytometry, and ultrasound. Effects of PFH loading on BMM adhesion molecule (PSGL-1, VLA-4, Mac-1, LFA-1) expression were analyzed by flow cytometry. Static adhesion of PFH loaded BMM to unstimulated and TNF-alpha stimulated b.End5 endothelial cells was assessed by microscopy.
Results: Incubation of BMM with PFH emulsions resulted in dose-dependent uptake and increased echogenicity (max. 17 dB). Flow cytometry analyses revealed no down-regulation related to PFH loading of BMM adhesion molecule expression. Endothelial adhesion remained functional, even after 24 h, although PFH loading dose-dependently attenuated static adhesion.
Conclusion: PFH loaded BMM may potentially serve as ultrasound contrast agent for noninvasive detection of atherogenic hotspots in arteries.