Objective, non-invasive measures of lung maturity and development, oxygen requirements and lung function, suitable for use in small, unsedated infants, are urgently required to define the nature and severity of persisting lung disease, and to identify risk factors for developing chronic lung problems. Disorders of lung growth, maturation and control of breathing are among the most important problems faced by the neonatologists. At present, no system for continuous monitoring of neonate lung function to reduce the risk of chronic lung disease in infancy in intensive care units exists. We are in the process of developing a new integrated electrical impedance tomography (EIT) system based on wearable technology to integrate measures of the boundary diameter from the boundary form for neonates into the reconstruction algorithm. In principle, this approach could provide a reduction of image artefacts in the reconstructed image associated with incorrect boundary form assumptions. In this paper, we investigate the required accuracy of the boundary form that would be suitable to minimize artefacts in the reconstruction for neonate lung function. The number of data points needed to create the required boundary form is automatically determined using genetic algorithms. The approach presented in this paper is to assist quality of the reconstruction using different approximations to the ideal boundary form. We also investigate the use of a wavelet algebraic multi-grid (WAMG) preconditioner to reduce the reconstruction computation requirements. Results are presented that demonstrate a full 3D model is required to minimize artefact in the reconstructed image and the implementation of a WAMG for EIT.