Posttranslational protein tyrosine oxidation, to yield 3-nitrotyrosine, is a biologically relevant protein modification related with acute and chronic inflammation and degenerative processes. It is usually associated with a decrease or loss in protein function. However, in some proteins, tyrosine nitration results in an increase or gain in protein function. Nitration of cytochrome c by biological oxidants in vitro can be achieved via different mechanisms, which include reactions with peroxynitrite, nitrite plus hydrogen peroxide, and nitric oxide plus hydrogen peroxide, and result in a loss in its electron transport capacity and in a higher peroxidatic activity. This chapter describes the methodology for studying chemical and biological properties of nitrocytochrome c. In particular, we report methods to synthesize tyrosine-nitrated cytochrome c, purify cytochrome c mononitrated species, map the sites of tyrosine nitration, and investigate the functional consequences of nitrated cytochrome c on mitochondrial electron transport properties, peroxidatic activity, and apoptosome assembly.