p73 and p53 have been known to play an important role in cellular damage responses such as apoptosis. Although p73 is a structural and functional homolog of p53 tumor suppressor gene, much less is known about the mechanism of p73-induced apoptotic cell death. In this study, we demonstrate that p19(ras) interaction with p73beta amplifies p73beta-induced apoptotic signaling responses including Bax mitochondrial translocation, cytochrome c release, increased production of reactive oxygen species (ROS) and loss of mitochondrial transmembrane potential (DeltaPsi(m)). Furthermore, endogenous expression of p19(ras) and p73beta is significantly increased by Taxol treatment, and Taxol-enhanced endogenous p73beta transcriptional activities are further amplified by p19(ras), which markedly increased cellular apoptosis in p53-null SAOS2 cancer cell line. These results have important implications for understanding the molecular events of p19(ras) to p73 functions in cancer cells.