A flexible and economical computer simulation model for the process analysis, parameter prediction, and optimal design of hollow-fiber biochemical reactors (HFBRs) has been developed. The validity and predictive capability of the HFBR simulator was successfully tested with two independent laboratory case studies. Of particular interest are the transient transport and bioconversion mechanisms including the effect of radial mass convection on the substrate uptake in the lumen. The portable computer code is an efficient tool to aid in theoretical and experimental investigations. The underlying principles used for the model development are applicable to a broad family of (membrane) bioreactors.