Nano-polycrystalline vanadium oxide thin films prepared by pulsed laser deposition

J Nanosci Nanotechnol. 2008 May;8(5):2604-8.

Abstract

Nano-polycrystalline vanadium oxide thin films have been successfully produced by pulsed laser deposition on Si(100) substrates using a pure vanadium target in an oxygen atmosphere. The vanadium oxide thin film is amorphous when deposited at relatively low substrate temperature (500 degrees C) and enhancing substrate temperature (600-800 degrees C) appears to be efficient in crystallizing VOx thin films. Nano-polycrystalline V3O7 thin film has been achieved when deposited at oxygen pressure of 8 Pa and substrate temperature of 600 degrees C. Nano-polycrystalline VO2 thin films with a preferred (011) orientation have been obtained when deposited at oxygen pressure of 0.8 Pa and substrate temperatures of 600-800 degrees C. The vanadium oxide thin films deposited at high oxygen pressure (8 Pa) reveal a mix-valence of V5+ and V4+, while the VOx thin films deposited at low oxygen pressure (0.8 Pa) display a valence of V4+. The nano-polycrystalline vanadium oxide thin films prepared by pulsed laser deposition have smooth surface with high qualities of mean crystallite size ranging from 30 to 230 nm and Ra ranging from 1.5 to 22.2 nm. Relative low substrate temperature and oxygen pressure are benifit to aquire nano-polycrystalline VOx thin films with small grain size and low surface roughness.