Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy

Magn Reson Med. 2008 Jul;60(1):33-40. doi: 10.1002/mrm.21647.

Abstract

A fast and quantitative 2D high-resolution magic angle spinning (HR-MAS) total correlation spectroscopy (TOCSY) experiment was developed to resolve and quantify the choline- and ethanolamine-containing metabolites in human prostate tissues in approximately 1 hr prior to pathologic analysis. At a 40-ms mixing time, magnetization transfer efficiency constants were empirically determined in solution and used to calculate metabolite concentrations in tissue. Phosphocholine (PC) was observed in 11/15 (73%) cancer tissues but only 6/32 (19%) benign tissues. PC was significantly higher (0.39 +/- 0.40 mmol/kg vs. 0.02 +/- 0.07 mmol/kg, z = 3.5), while ethanolamine (Eth) was significantly lower in cancer versus benign prostate tissues (1.0 +/- 0.8 mmol/kg vs. 2.3 +/- 1.9 mmol/kg, z = 3.3). Glycerophosphocholine (GPC) (0.57 +/- 0.87 mmol/kg vs. 0.29 +/- 0.26 mmol/kg, z = 1.2), phosphoethanolamine (PE) (4.4 +/- 2.2 mmol/kg vs. 3.4 +/- 2.6 mmol/kg, z = 1.4), and glycerophosphoethanolamine (GPE) (0.54 +/- 0.82 mmol/kg vs. 0.15 +/- 0.15 mmol/kg, z = 1.8) were higher in cancer versus benign prostate tissues. The ratios of PC/GPC (3.5 +/- 4.5 vs. 0.32 +/- 1.4, z = 2.6), PC/PE (0.08 +/- 0.08 vs. 0.01 +/- 0.03, z = 3.5), PE/Eth (16 +/- 22 vs. 2.2 +/- 2.0, z = 2.4), and GPE/Eth (0.41 +/- 0.51 vs. 0.06 +/- 0.06, z = 2.6) were also significantly higher in cancer versus benign tissues. All samples were pathologically interpretable following HR-MAS analysis; however, degradation experiments showed that PC, GPC, PE, and GPE decreased 7.7 +/- 2.2%, while Cho+mI and Eth increased 18% in 1 hr at 1 degrees C and a 2250 Hz spin rate.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Choline / analysis*
  • Ethanolamine / analysis*
  • Ethanolamines / analysis
  • Humans
  • Magnetic Resonance Spectroscopy / methods*
  • Male
  • Middle Aged
  • Phosphorylcholine / analysis
  • Prostate / chemistry*
  • Prostatic Neoplasms / chemistry*

Substances

  • Ethanolamines
  • Phosphorylcholine
  • Ethanolamine
  • phosphorylethanolamine
  • Choline