Noninvasive monitoring of cerebral perfusion pressure in patients with acute liver failure using transcranial doppler ultrasonography

Liver Transpl. 2008 Jul;14(7):1048-57. doi: 10.1002/lt.21499.

Abstract

Elevated intracranial pressure (ICP) leads to loss of cerebral perfusion, cerebral herniation, and irreversible brain damage in patients with acute liver failure (ALF). Conventional techniques for monitoring ICP can be complicated by hemorrhage and infection. Transcranial doppler ultrasonography (TCD) is a noninvasive device which can continuously measure cerebral blood flow velocity, producing a velocity-time waveform that indirectly monitors changes in cerebral hemodynamics, including ICP. The primary goal of this study was to determine whether TCD waveform features could be used to differentiate ALF patients with respect to ICP or, equally important, cerebral perfusion pressure (CPP) levels. A retrospective study of 16 ALF subjects with simultaneous TCD, ICP, and CPP measurements yielded a total of 209 coupled ICP-CPP-TCD observations. The TCD waveforms were digitally scanned and seven points corresponding to a simplified linear waveform were identified. TCD waveform features including velocity, pulsatility index, resistive index, fraction of the cycle in systole, slopes, and angles associated with changes in the slope in each region, were calculated from the simplified waveform data. Paired ICP-TCD observations were divided into three groups (ICP < 20 mmHg, n = 102; 20 < or = ICP < 30 mmHg, n = 74; and ICP > or = 30 mmHg, n = 33). Paired CPP-TCD observations were also divided into three groups (CPP > or = 80 mmHg, n = 42; 80 > CPP > or = 60 mmHg, n = 111; and CPP < 60 mmHg, n = 56). Stepwise linear discriminant analysis was used to identify TCD waveform features that discriminate between ICP groups and CPP groups. Four primary features were found to discriminate between ICP groups: the blood velocity at the start of the Windkessel effect, the slope of the Windkessel upstroke, the angle between the end systolic downstroke and start diastolic upstroke, and the fraction of time spent in systole. Likewise, 4 features were found to discriminate between the CPP groups: the slope of the Windkessel upstroke, the slope of the Windkessel downstroke, the slope of the diastolic downstroke, and the angle between the end systolic downstroke and start diastolic upstroke. The TCD waveform captures the cerebral hemodynamic state and can be used to predict dynamic changes in ICP or CPP in patients with ALF. The mean TCD waveforms for corresponding, correctly classified ICP and CPP groups are remarkably similar. However, this approach to predicting intracranial hypertension and CPP needs to be further refined and developed before clinical application is feasible.

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Blood Pressure*
  • Cerebrovascular Circulation*
  • Female
  • Humans
  • Intracranial Pressure*
  • Liver Failure, Acute / physiopathology*
  • Male
  • Middle Aged
  • Middle Cerebral Artery / diagnostic imaging
  • Retrospective Studies
  • Ultrasonography, Doppler, Transcranial*