Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy

J Phys Chem A. 2008 Jul 24;112(29):6512-6. doi: 10.1021/jp7111395. Epub 2008 Jun 27.

Abstract

The knowledge of the physics and the chemistry behind the evaporation of solvents is very important for the development of several technologies, especially in the fabrication of thin films from liquid phase and the organization of nanostructures by evaporation-induced self-assembly. Ethanol, in particular, is one of the most common solvents in sol-gel and evaporation-induced self-assembly processing of thin films, and a detailed understanding of its role during these processes is of fundamental importance. Rapid scan time-resolved infrared spectroscopy has been applied to study in situ the evaporation of ethanol and ethanol-water droplets on a ZnSe substrate. Whereas the evaporation rate of ethanol remains constant during the process, water is adsorbed by the ethanol droplet from the external environment and evaporates in three stages that are characterized by different evaporation rates. The adsorption and evaporation process of water in an ethanol droplet has been observed to follow a complex behavior: due to this reason, it has been analyzed by two-dimensional infrared correlation. Three different components in the water bending band have been resolved.