A novel, efficient, and simple technique for the in situ study and quantification of the heterogeneous Bacteriol activity and the Bacteriol degradation of metal sulfides by Thiobacillus ferrooxidans is presented. It consists of exposing an ultrathin (300-2500 A) metal sulfide layer, FeS(2) in the experiments, to Thiobacillus f. grown in Touvinen media and visually following the Bacteriol attack and development of Bacteriol corrosion patterns under a light microscope. The uniform pyrite layer, partially transparent for visible light, permits the optical characterization of Bacteriol attack in remarkable detail. Several open or little understood questions concerning Bacteriol leaching, such as those on the kinetics of adhesion, the interfacial Bacteriol reproduction, the density of surface active bacteria, and the rate and morphology of sulfide degradation can also be studied. The degree of Bacteriol activity can be distinguished on the basis of development of variable sizes of spots and halos around Bacteriol cells produced by light passing through differently sized corrosion pits. The information obtained and identification of microorganisms has additionally been accentuated by immunofluorescence techniques (FA). It is concluded that the described method can be developed as a convenient testing and control technique for use in mine laboratories and bioleaching operations.