This study evaluated the pharmacodynamics of biapenem in peritoneal fluid (PF). Biapenem (300 or 600mg) was administered via a 0.5-h infusion to 19 patients before abdominal surgery. Venous blood and PF samples were obtained after 0.5, 1, 2, 3, 4, 5 and 6h. Drug concentration data (108 plasma samples and 105 PF samples) were analysed using population pharmacokinetic modelling. A three-compartment model fits the data, with creatinine clearance (CL(Cr)) as the most significant covariate: CL (L/h)=0.036 x CL(Cr)+4.88, V1 (L)=6.95, Q2 (L/h)=2.05, V2 (L)=3.47, Q3 (L/h)=13.7 and V3 (L)=5.91, where CL is the clearance, Q2 and Q3 are the intercompartmental clearances, and V1, V2 and V3 are the volumes of distribution of the central, peripheral and peritoneal compartments, respectively. A Monte Carlo simulation using the pharmacokinetic model showed the probabilities of attaining the bactericidal exposure target (30% of the time above the minimum inhibitory concentration (T>MIC)) in PF were greater than or equal to those in plasma. In the cases of CL(Cr)=90 and 60mL/min, the site-specific pharmacodynamic-derived breakpoints (the highest MIC values at which the probabilities of target attainment in PF were >or=90%) were 2microg/mL for 300mg every 12h, 4microg/mL for biapenem 300mg every 8h (q8h) and 8microg/mL for 600mg q8h. Thus, these results should support the clinical use of biapenem as a treatment for intra-abdominal infections and facilitate the design of the dosing regimen.