Rationale: Chronic treatment with the mu-opioid receptor agonist, buprenorphine, reduces cocaine-induced behaviors in rats with a history of cocaine self-administration. The mechanisms underlying these actions of buprenorphine remain unclear.
Objectives: The objective of this study is to investigate the effects of chronic buprenorphine treatment on cocaine-induced activity and levels of glutamate and dopamine (DA) in the nucleus accumbens (NAc) in rats that were preexposed to cocaine or drug-naïve.
Materials and methods: In experiment 1, basal levels of NAc glutamate were assessed using in vivo microdialysis in cocaine-naïve rats that were treated chronically with buprenorphine (3.0 mg/kg per day) via osmotic minipumps or that underwent sham surgery. In experiment 2, rats were preexposed to seven daily injections of cocaine or saline. After a 12-16-day drug-free period, extracellular levels of NAc glutamate and DA and locomotor activity were assessed simultaneously, before and after an acute injection of cocaine (15 mg/kg, intraperitoneal), in rats under sham and chronic buprenorphine (3.0 mg/kg per day) treatment.
Results: Chronic buprenorphine treatment increased basal levels of glutamate in drug-naïve and cocaine-preexposed rats, blocked the expression of locomotor sensitization to cocaine, and potentiated the NAc DA response to acute cocaine in cocaine-preexposed rats.
Conclusions: These findings suggest that buprenorphine may block the expression of cocaine sensitization and other cocaine-related behaviors by increasing basal levels of glutamate in the NAc, which would serve to decrease the effectiveness of cocaine or cocaine-associated cues.