It has been established that intracellular ubiquitin pools are subject to regulatory constrains. Less certain is the mechanism by which the pool of conjugated ubiquitin shift in parallel with total ubiquitin, and how this type of regulation affects the flux of substrates through the pathway. In this study we demonstrate that ubiquitin over-expression promotes the destabilization of the ubiquitin protein ligase E6AP, by a mechanism involving self-ubiquitination, and the stabilization of p53. These results represent the very first evidence that the levels of a ubiquitin ligase can be regulated in vivo by ubiquitin abundance, supporting the idea that a strict interrelationship between pathway component activities and ubiquitin pool size exists. Interestingly, ubiquitin-induced p53 accumulation did not induce cell-cycle arrest, suggesting that although fluctuations of the intracellular ubiquitin content may actively modulate the level of regulatory proteins, this event is not per se sufficient to elicit a cellular response in terms of proliferation.