The changes in milk fat globules and fat globule surface proteins of both low-preheated and high-preheated concentrated milks, which were homogenized at low or high pressure, were examined. The average fat globule size decreased with increasing homogenization pressure. The total surface protein (mg m-2) of concentrated milk increased after homogenization, the extent of the increase being dependent on the temperature and the pressure of homogenization, as well as on the preheat treatment. The concentrates obtained from high-preheated milks had higher surface protein concentration than the concentrates obtained from low-preheated milks after homogenization. Concentrated milks heat treated at 79 degrees C either before or after homogenization had greater amounts of fat globule surface protein than concentrated milks heat treated at 50 or 65 degrees C. This was attributed to the association of whey protein with the native MFGM (milk fat globule membrane) proteins and the adsorbed skim milk proteins. Also, at the same homogenization temperature and pressure, the amount of whey protein on the fat globule surface of the concentrated milk that was heated after homogenization was greater than that of the concentrated milk that was heated before homogenization. The amounts of the major native MFGM proteins did not change during homogenization, indicating that the skim milk proteins did not displace the native MFGM proteins but adsorbed on to the newly formed surface.