Anti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I

J Lipid Res. 2008 Nov;49(11):2302-11. doi: 10.1194/jlr.M800075-JLR200. Epub 2008 Jul 11.

Abstract

4F is an anti-inflammatory, apolipoprotein A-I (apoA-I)-mimetic peptide that is active in vivo at nanomolar concentrations in the presence of a large molar excess of apoA-I. Physiologic concentrations ( approximately 35 microM) of human apoA-I did not inhibit the production of LDL-induced monocyte chemotactic activity by human aortic endothelial cell cultures, but adding nanomolar concentrations of 4F in the presence of approximately 35 microM apoA-I significantly reduced this inflammatory response. We analyzed lipid binding by surface plasmon resonance. The anti-inflammatory 4F peptide bound oxidized lipids with much higher affinity than did apoA-I. Initially, we examined the binding of PAPC (1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine) and observed that its oxidized products bound 4F with an affinity that was approximately 4-6 orders of magnitude higher than that of apoA-I. This high binding affinity was confirmed in studies with defined lipids and phospholipids. 3F-2 and 3F(14) are also amphipathic alpha-helical octadecapeptides, but 3F-2 inhibits atherosclerosis in mice and 3F(14) does not. Like 4F, 3F-2 also bound oxidized phospholipids with very high affinity, whereas 3F(14) resembled apoA-I. The extraordinary ability of 4F to bind pro-inflammatory oxidized lipids probably accounts for its remarkable anti-inflammatory properties.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Anti-Inflammatory Agents, Non-Steroidal / metabolism
  • Apolipoprotein A-I / metabolism*
  • Apolipoprotein A-I / physiology
  • Cells, Cultured
  • Humans
  • Inflammation Mediators / metabolism*
  • Inflammation Mediators / physiology
  • Lipid Peroxidation / physiology*
  • Molecular Mimicry / physiology*
  • Molecular Sequence Data
  • Peptides / metabolism*
  • Phospholipids / metabolism
  • Protein Binding / physiology

Substances

  • APOA1 protein, human
  • Anti-Inflammatory Agents, Non-Steroidal
  • Apolipoprotein A-I
  • D-4F peptide
  • Inflammation Mediators
  • L-4F peptide
  • Peptides
  • Phospholipids