Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle

Genetics. 2008 Jul;179(3):1503-12. doi: 10.1534/genetics.107.084301. Epub 2008 Jul 13.

Abstract

When a genetic marker and a quantitative trait locus (QTL) are in linkage disequilibrium (LD) in one population, they may not be in LD in another population or their LD phase may be reversed. The objectives of this study were to compare the extent of LD and the persistence of LD phase across multiple cattle populations. LD measures r and r(2) were calculated for syntenic marker pairs using genomewide single-nucleotide polymorphisms (SNP) that were genotyped in Dutch and Australian Holstein-Friesian (HF) bulls, Australian Angus cattle, and New Zealand Friesian and Jersey cows. Average r(2) was approximately 0.35, 0.25, 0.22, 0.14, and 0.06 at marker distances 10, 20, 40, 100, and 1000 kb, respectively, which indicates that genomic selection within cattle breeds with r(2) >or= 0.20 between adjacent markers would require approximately 50,000 SNPs. The correlation of r values between populations for the same marker pairs was close to 1 for pairs of very close markers (<10 kb) and decreased with increasing marker distance and the extent of divergence between the populations. To find markers that are in LD with QTL across diverged breeds, such as HF, Jersey, and Angus, would require approximately 300,000 markers.

MeSH terms

  • Animals
  • Cattle / genetics*
  • Genome / genetics
  • Linkage Disequilibrium / genetics*
  • Population Density