Many facultatively fermentative yeast species exhibit a "Kluyver effect": even under oxygen-limited growth conditions, certain disaccharides that support aerobic, respiratory growth are not fermented, even though the component monosaccharides are good fermentation substrates. This article investigates the applicability of this phenomenon for high-cell-density cultivation of yeasts. In glucose-grown batch cultures of Candida utilis CBS 621, the onset of oxygen limitation led to alcoholic fermentation and, consequently, a decrease of the biomass yield on sugar. In maltose-grown cultures, alcoholic fermentation did not occur and oxygen-limited growth resulted in high biomass concentrations (90 g dry weight L(-1) from 200 g L(-1) maltose monohydrate in a simple batch fermentation). It was subsequently investigated whether this principle could also be applied to Kluyveromyces species exhibiting a Kluyver effect for lactose. In oxygen-limited, glucose-grown chemostat cultures of K. wickerhamii CBS 2745, high ethanol concentrations and low biomass yields were observed. Conversely, ethanol was absent and biomass yields on sugar were high in oxygen-limited chemostat cultures grown on lactose. Batch cultures of K. wickerhamii grown on lactose exhibited the same growth characteristics as the maltose-grown C. utilis cultures: absence of ethanol formation and high biomass yields. Within the species K. marxianus, the occurrence of a Kluyver effect for lactose is known to be strain dependent. Thus, K. marxianus CBS 7894 could be grown to high biomass densities in lactose-grown batch cultures, whereas strain CBS 5795 produced ethanol after the onset of oxygen limitation and, consequently, yielded low amounts of biomass. Because the use of yeast strains exhibiting a Kluyver effect obviates the need for controlled substrate-feeding strategies to avoid oxygen limitation, such strains should be excellently suited for the production of biomass and growth-related products from low-cost disaccharide-containing feedstocks. (c) 1996 John Wiley & Sons, Inc.