Fast training and testing procedures are crucial in biometrics recognition research. Conventional algorithms, e.g., principal component analysis (PCA), fail to efficiently work on large-scale and high-resolution image data sets. By incorporating merits from both two-dimensional PCA (2DPCA)-based image decomposition and fast numerical calculations based on Haarlike bases, this technical correspondence first proposes binary 2DPCA (B-2DPCA). Empirical studies demonstrated the advantages of B-2DPCA compared with 2DPCA and binary PCA.