Pitch representations in the auditory nerve: two concurrent complex tones

J Neurophysiol. 2008 Sep;100(3):1301-19. doi: 10.1152/jn.01361.2007. Epub 2008 Jul 16.

Abstract

Pitch differences between concurrent sounds are important cues used in auditory scene analysis and also play a major role in music perception. To investigate the neural codes underlying these perceptual abilities, we recorded from single fibers in the cat auditory nerve in response to two concurrent harmonic complex tones with missing fundamentals and equal-amplitude harmonics. We investigated the efficacy of rate-place and interspike-interval codes to represent both pitches of the two tones, which had fundamental frequency (F0) ratios of 15/14 or 11/9. We relied on the principle of scaling invariance in cochlear mechanics to infer the spatiotemporal response patterns to a given stimulus from a series of measurements made in a single fiber as a function of F0. Templates created by a peripheral auditory model were used to estimate the F0s of double complex tones from the inferred distribution of firing rate along the tonotopic axis. This rate-place representation was accurate for F0s greater, similar900 Hz. Surprisingly, rate-based F0 estimates were accurate even when the two-tone mixture contained no resolved harmonics, so long as some harmonics were resolved prior to mixing. We also extended methods used previously for single complex tones to estimate the F0s of concurrent complex tones from interspike-interval distributions pooled over the tonotopic axis. The interval-based representation was accurate for F0s less, similar900 Hz, where the two-tone mixture contained no resolved harmonics. Together, the rate-place and interval-based representations allow accurate pitch perception for concurrent sounds over the entire range of human voice and cat vocalizations.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acoustic Stimulation / methods
  • Action Potentials / physiology
  • Animals
  • Cats
  • Cochlear Nerve / cytology*
  • Female
  • Neurons / physiology*
  • Pitch Perception / physiology*
  • Psychoacoustics
  • Sound*
  • Time Factors