Hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose

Carbohydr Res. 2008 Oct 13;343(15):2600-4. doi: 10.1016/j.carres.2008.06.003. Epub 2008 Jun 8.

Abstract

The hydrogen bond systems of cellulose and its derivatives are one of the most important factors regarding their physical- and chemical properties such as solubility, crystallinity, gel formation, and resistance to enzymatic degradation. In this paper, it was attempted to clarify the intra- and intermolecular hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose (3MC). First, the 3MC was synthesized and the cast film thereof was characterized in comparison to 2,3-di-O-methyl cellulose, 6-mono-O-methyl cellulose, and 2,3,6-tri-O-methyl cellulose by means of wide angle X-ray diffraction (WAXD) and (13)C cross polarization/magic angle spinning NMR spectroscopy. Second, the hydrogen bonds in the 3MC film were analyzed by means of FTIR spectroscopy in combination with a curve fitting method. After deconvolution, the resulting two main bands (Fig. 3) indicated that instead of intramolecular hydrogen bonds between position OH-3 and O-5 another intramolecular hydrogen bond between OH-2 and OH-6 may exist. The large deconvoluted band at 3340cm(-1) referred to strong interchain hydrogen bonds involving the hydroxyl groups at C-6. The crystallinity of 54% calculated from the WAXD supports also the dependency of the usually observed crystallization in cellulose of the hydroxyl groups at C-6 to engage in interchain hydrogen bonding.

MeSH terms

  • Cellulose / chemistry
  • Crystallization
  • Crystallography
  • Hydrogen Bonding
  • Magnetic Resonance Spectroscopy
  • Methylcellulose / chemistry*
  • Models, Chemical
  • Models, Molecular
  • Molecular Conformation
  • Molecular Structure
  • Solubility
  • Spectroscopy, Fourier Transform Infrared
  • Temperature
  • X-Ray Diffraction

Substances

  • Cellulose
  • Methylcellulose