New detoxification modes of treatment for liver failure that use solid adsorbents to remove toxins bound to albumin in the patient bloodstream are entering clinical evaluations, frequently in head-to-head competition. While generally effective in reducing toxin concentration beyond that obtainable by conventional dialysis procedures, the solid adsorbent processes are largely the result of heuristic development. Understanding the principles and limitations inherent in competitive toxin binding, albumin versus solid adsorbent, will enhance the design process and, possibly, improve detoxification performance. An equilibrium thermodynamic analysis is presented for both the molecular adsorbent recirculating system (MARS) and fractionated plasma separation, adsorption, and dialysis system (Prometheus), two advanced systems with distinctly different operating modes but with similar equilibrium limitations. The Prometheus analysis also applies to two newer approaches: sorbent suspension reactor and microsphere-based detoxification system. Primary results from the thermodynamic analysis are that: (i) the solute-albumin binding constant is of minor importance to equilibrium once it exceeds about 10(5) L/mol; (ii) the Prometheus approach requires larger solid adsorbent columns than calculated by adsorbent solute capacity alone; and (iii) the albumin-containing recycle stream in the MARS approach is a major reservoir of removed toxin. A survey of published results indicates that MARS is operating under mass transfer control dictated by solute-albumin equilibrium in the recycle stream, and Prometheus is approaching equilibrium limits under current clinical protocols.