The par stability determinant of Enterococcus faecalis plasmid pAD1 is the only antisense RNA-regulated addiction module identified to date in gram-positive bacteria. par encodes two small, convergently transcribed RNAs, designated RNA I and RNA II, that function as the toxin (Fst)-encoding and antitoxin components, respectively. Previous work showed that structures at the 5' end of RNA I are important in regulating its translation. The work presented here reveals that a stem-loop sequestering the Fst ribosome binding site is required for translational repression but a helix sequestering the 5' end of RNA I is not. Furthermore, disruption of the stem-loop prevented RNA II-mediated repression of Fst translation in vivo. Finally, although Fst-encoding wild-type RNA I is not toxic in Escherichia coli, mutations affecting stem-loop stability resulted in toxicity in this host, presumably due to increased translation.