Serum-based diagnosis offers the prospect of early lung carcinoma detection and of differentiation between benign and malignant nodules identified by CT. One major challenge toward a future blood-based diagnostic consists in showing that seroreactivity patterns allow for discriminating lung cancer patients not only from normal controls but also from patients with non-tumor lung pathologies. We addressed this question for squamous cell lung cancer, one of the most common lung tumor types. Using a panel of 82 phage-peptide clones, which express potential autoantigens, we performed serological spot assay. We screened 108 sera, including 39 sera from squamous cell lung cancer patients, 29 sera from patients with other non-tumor lung pathologies, and 40 sera from volunteers without known disease. To classify the serum groups, we employed the standard Naïve Bayesian method combined with a subset selection approach. We were able to separate squamous cell lung carcinoma and normal sera with an accuracy of 93%. Low-grade squamous cell lung carcinoma were separated from normal sera with an accuracy of 92.9%. We were able to distinguish squamous cell lung carcinoma from non-tumor lung pathologies with an accuracy of 83%. Three phage-peptide clones with sequence homology to ROCK1, PRKCB1 and KIAA0376 reacted with more than 15% of the cancer sera, but neither with normal nor with non-tumor lung pathology sera. Our study demonstrates that seroreactivity profiles combined with statistical classification methods have great potential for discriminating patients with squamous cell lung carcinoma not only from normal controls but also from patients with non-tumor lung pathologies.