Background: The difficulty in elucidating the genetic basis of complex diseases roots in the many factors that can affect the development of a disease. Some of these genetic effects may interact in complex ways, proving undetectable by current single-locus methodology.
Results: We have developed an analysis tool called Hypothesis Free Clinical Cloning (HFCC) to search for genome-wide epistasis in a case-control design. HFCC combines a relatively fast computing algorithm for genome-wide epistasis detection, with the flexibility to test a variety of different epistatic models in multi-locus combinations. HFCC has good power to detect multi-locus interactions simulated under a variety of genetic models and noise conditions. Most importantly, HFCC can accomplish exhaustive genome-wide epistasis search with large datasets as demonstrated with a 400,000 SNP set typed on a cohort of Parkinson's disease patients and controls.
Conclusion: With the current availability of genetic studies with large numbers of individuals and genetic markers, HFCC can have a great impact in the identification of epistatic effects that escape the standard single-locus association analyses.